The impact of COVID-19 first wave national lockdowns on perinatal outcomes: a rapid review and metaanalysis

PRESENTER: Christine Vaccaro

BACKGROUND

- Preventative public health measures, including lockdown strategies, were declared in most countries to control COVID-19 transmission.
- **Objective:** to evaluate the impact of initial COVID-19 lockdowns on the incidence of perinatal outcomes.

METHODS

- Databases: EMBASE, CORD-19, LitCovid (PubMed), WHO Global research on corona virus disease (COVID-19), and MedRxiv.
- English studies published from the first reports on COVID-19 until 17 July 2021.
- Perinatal outcomes: LBW (< 2500 g), PTB (< 37 weeks), and stillbirth.

RESULTS

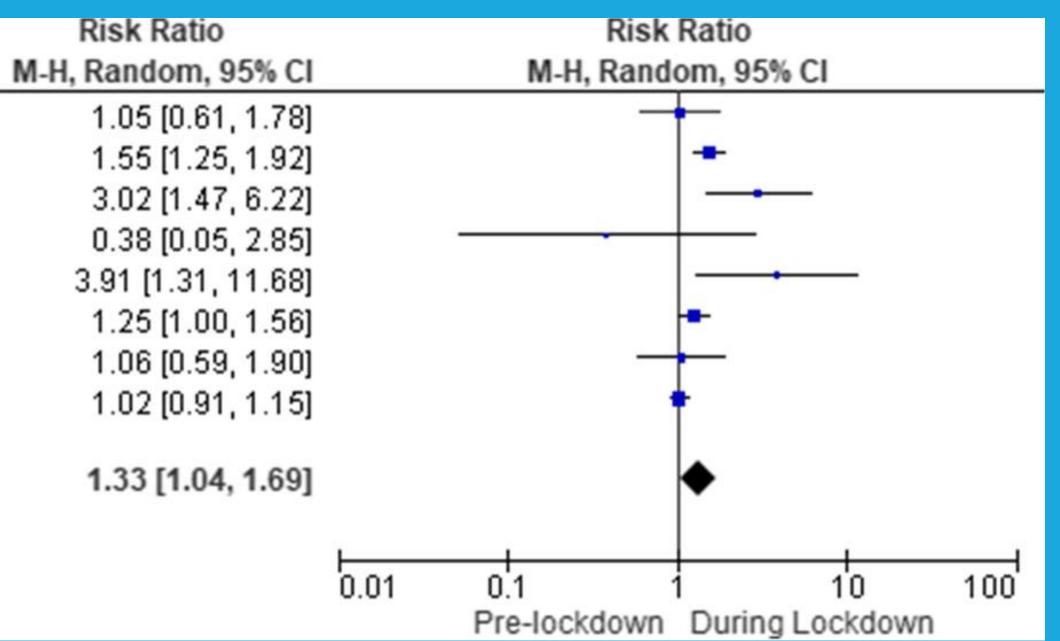
- 1967 screened articles, 18 publications included.
- Sample size of pregnant women ranged from 3399 to 1599 547 from **15** countries.

Preterm Birth

• 13 studies, with conflicting results. Odds ratios [95% CI] ranging from 0.09 [0.01, 0.40] to 1.93 [0.76, 4.79].

Low Birth Weight

• 3 studies. 1 statistically significant study, rate ratio of 3.77 [1.21, 11.75].


Stillbirth

• 10 studies. 4 statistically significant studies, adjusted relative risk ranging from 1.46 [1.13, 1.89] to 3.9 [1.83, 12.0].

COVID-19 lockdowns led to sudden changes in birth outcomes, with variations between countries. Pooled results show a significant association between lockdown measures and stilbirth rates.

	Stillbirth Lockdown		Stillbirth Pre-lockdown			
Study or Subgroup	Events	Total	Events	Total	Weight	I
Arnaez et al. 2021	14	3044	295	67045	11.3%	
Ashish et al. 2020	145	6897	179	13189	20.9%	
De Curtis et al. 2020	26	805	10	935	7.8%	
Gallo et al 2020	1	333	21	2689	1.4%	
Khalil et al. 2020	16	1718	4	1681	4.1%	
Kumar et al. 2021	134	3610	183	6161	20.8%	
Meyer et al. 2020	22	2594	22	2742	10.1%	
Stowe et al. 2020	543	131218	565	139745	23.6%	
Total (95% CI)		150219		234187	100.0%	
Total events	901		1279			
Heterogeneity: Tau ² = 0.06; Chi ² = 24.50, df = 7 (P = 0.0009); I ² = 71%						
Test for overall effect: Z = 2.28 (P = 0.02)						

Figure 1. Forest plot of stillbirths before and during COVID-19 lockdown periods.

CONCLUSIONS and **FUTURE** RECOMENDATIONS

2021:153(1):76-82

RESULTS contd.

Meta-Analyses • 14 studies were pooled in . Lockdown period associated with a significant risk of stillbirth: RR = 1.33 [95% CI 1.04, 1.69] when compared to pre-pandemic period. • Lockdown measures were not associated

with a significant risk of PTB, LBW and VLBW compared to pre-pandemic periods.

• Criteria that led to unexpected changes in LBW, PTB, and stillbirth remains unclear. • Pooled results show a significant association between lockdown measures and stillbirth rates, but not low birth weight rates. • Further studies warranted: examine

differences in other countries' lockdowns and sociodemographic groups from low to middle-income countries.

• Learning from changes in perinatal outcomes during COVID-19 lockdowns poses an opportunity to reduce the leading causes of childhood mortality worldwide.

STUDIES INCLUDED IN THE REVIEW

Arnaez J, Ochoa-Sangrador C, Caserío S, Gutiérrez EP, Jiménez M. del P, Castañón L, et al. lack of changes in preterm delivery and stillbirths during COVID-19 lockdown in a European region. Eur J Pediatr. 2021:180(6):1997-2002. Ashish KC, Gurung R, Kinney M V., Sunny AK, Moinuddin M, Basnet O, et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortalit outcomes in Nepal: a prospective observational study. Lancet Glob Heal. 2020;8(10):e1273-81 Caniglia EC, Magosi LE, Zash R, Diseko M, Mayondi G, Mabuta J, et al. Modest reduction in adverse birth outcomes following the COVID-19 lockdown. Am J Obstet Gynecol De Curtis M, Villani L, Polo A. Increase of stillbirth and decrease of late preterm infants during the COVID-19 pandemic lockdown. BMJ Arch Dis Child Fetal Neonatal Ec Gallo LA, Gallo TF, Borg DJ, Moritz KM, Clifton VL, Kumar S. Preterm birth rates in a large tertiary Australian maternity centre during COVID-19 mitigation measures. medRxiv. 2020:(January) 2020.11.24.20237529. https://doi.org/10.1101/2020.11.24.2023 Hedermann G, Hedley PL, Bækvad-Hansen M, Hjalgrim H, Rostgaard K, Poorisrisak P, et al. Danish premature birth rates during the COVID-19 lockdown. Arch Dis Child Fet Neonatal Ed. 2021;106(1):F93-5. Huseynova R, Bin Mahmoud L, Abdelrahim A, Al Hemaid M, Almuhaini MS, Jaganathan PP, et al. Prevalence of preterm birth rate during COVID-19 lockdown in a tertiary care hospital, Riyadh. Cureus. 2021;13(3):1-8 Justman N, Shahak GGO, et al. Lockdown with a Price: the impact of the COVID-19 pandemic on prenatal care and perinatal outcomes in a tertiary care center. Isr Med Assoc J Khalil A, von Dadelszen P, Draycott T, Ugwumadu A, O'Brien P, Magee L. Change in the Incidence of Stillbirth and Preterm Delivery During the COVID-19 Pandemic. JAMA. 2020;324(7):705-6. https://doi.org/10.1001/jama.2020.12746 nancy outcome during the first covid 19 lockdown in Vienna, Austria. Int J Environ Res Public Health. 2021;18(7):1–14 Matheson A, McGannon CJ, Malhotra A, Palmer KR, Stewart AE, Wallace EM, et al. Prematurity rates during the coronavirus disease 2019 (COVID-19) pandemic lockdown in Melbourne, Australia. Obstet Gynecol. 2021;137(3):2019-21. 12. Been JV, Burgos Ochoa L, Bertens LCM, Schoenmakers S, Steegers EAP, Reiss IKM. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi experimental study. Lancet Public Heal. 2020;5(11):e604–11. https://doi.org/1 13. Philip RK, Purtill H, Reidy E, et al. Reduction in preterm births during the COVID-19 lockdown in Ireland: a natural experiment allowing analysis of data from the prior two decades medRxiv. 2020; 2020.06.03.20121442. 14. Stowe J, Smith H, Thurland K, et al. Stillbirths During the COVID-19 Pandemic in England, April–June 2020. JAMA. 2021;325(1). https://doi.org/10.1001/jama.2020.21369. 15. Mever R, Bart Y, Tsur A, Yinon Y, Friedrich L, Maixner N, et al. A marked decrease in preterm deliveries during the coronavirus disease 2019 pandemic. Am J Obstet Gynecol 2021;224(2):234-7. https://doi.org/10.1016/j.ajog.2020.10.017 16. Kumar M, Puri M, Yadav R, Biswas R, Singh M, Chaudhary V, et al. Stillbirths and the COVID-19 pandemic: looking beyond SARS-CoV-2 infection. Int J Gynecol Obstet. 17. Kumari V, Mehta KCR. COVID-19 outbreak and decreased hospitalisation of pregnant women in labour. Lancet Glob Heal. 2020;8(9):e1116–7. https://doi.org/10.1016/S2214-18. Shakespeare C, Dube H, Moyo S, Ngwenya S. Resilience and vulnerability of maternity services in Zimbabwe: a comparative analysis of the effect of Covid-19 and lockdown control measures on maternal and perinatal outcomes, a single-Centre cross-sectional study at Mpilo central hospital. BMC Pregnancy Childbirth. 2021;21(1):1

Christine Vaccaro, Farida Mahmoud, Laila Aboulatta, Basma Aloud, & Sherif Eltonsy

